

ISEKO

インプラントロック堤防®

「決壊しない堤防」への転換

ハザード

Earthquake Tsunami Cyclone Storm Surge Flood

対策目的

Prevention & Mitigation Recovery

対策分類

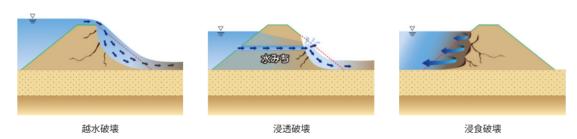
Infrastructure Technology


技術分類

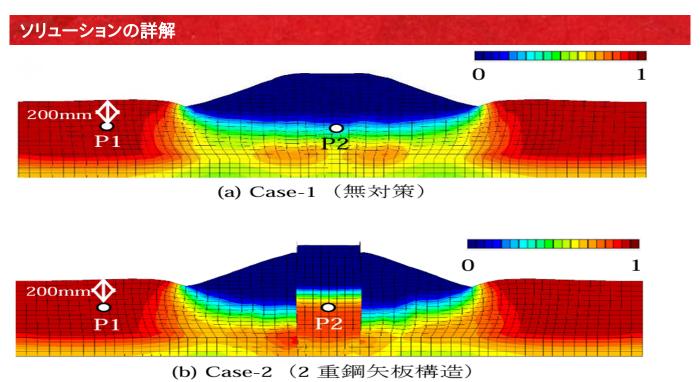
River & Basin Coast

ソリューションの特長

世界的な気候変動により、毎年各地で大規模な水害が多発しています。その被害が甚大化する最大の要因は「堤防の決壊」です。一般的な河川堤防は土を盛っただけの「土堤」であり、川の増水や越水に耐えられない科学的要因を


内包しています。「インプラントロック堤防図」は「インプラント構造図」による2列の鋼矢板連続壁と隔壁をこの「土堤」 内に構築することで、粘り強い堤防に強化するものです。

「インプラントロック堤防」は、越水や浸透で盛土が削られても壁体自体が堤防機能を保って破堤を防ぎます。加えて、地震時には2列の鋼矢板と隔壁によって囲まれた地盤を「拘束」すること(拘束地盤免震)で液状化地盤の流動を抑制して地盤沈下を抑えます。越水や浸透だけでなく、大地震が生じても「壊れない」ことを目指した構造がこの堤防の大きな特徴です。


ソリューションの背景

河川堤防の多くは土で造られ、洪水被害などを経て嵩上げ・拡幅が重ねられています。

土質や強度の分布が複雑であることや,不同沈下を生じ得ること,長期的な維持管理が必要なこと,流域の生活や自然環境と密接に関係し景観上の大切な役割を果たしていることなど,計画・設計を考えるうえで留意すべき点が多々あります。そのため,越水に対する粘り強い性能の具現化を中心に,地震・津波対策なども含めた総合的な災害対策が望まれています。

出典:「地盤工学ジャーナル」Vol.12, No.1, 109-122, P.117, 図13

本工法で強化された堤防の耐震性能は、海岸堤防や河川堤防を対象に検証されています。

液状化を伴う地震によって堤体側面が崩れる状況においても、2列の鋼矢板壁およびタイ材がコア部の変形を抑制し、 支持地盤に打設された鋼矢板壁によって天端高さが維持されることを明らかにしています。

この耐震機構は液状化を考慮可能な有限要素解析で再現され、レベル2地震動に対する耐震設計手法を構築してい

ます。

本工法の特徴として以下の点が,実証的に示されています。

- ・洪水時には、鋼矢板壁は適切に根入れされることでボイリングを抑制するほか、越水が生じても天端高さを保持し越水量を制限できる。
- ・地震時には、タイ材で結合した2列の鋼矢板の拘束効果によってコア部の変形は抑制され、液状化被害を軽減することができる。
- ・地震直後に津波が襲来する複合災害に対しても、鋼矢板の下端を強固な地盤に打設しておくことで地震時の天端高さが保持されるため、津波による越水量を制限することができる。

ソリューションの実績や適用例

高知海岸堤防改良工事 仁ノエ区(高知県高知市)/国土交通省 四国地方整備局 高知河川国道事務所

河川堤防においては「土堤原則」に阻まれているため実績はありませんが、高知海岸堤防改良工事の一部区間でこの 構造が採用されています。

岩手県下閉伊郡山田町織笠(しもへいぐん やまだまち おりかさ)

東日本大震災時に岩手県の織笠川の河口付近で、防潮水門建設のための仮設締切構造物として同様の構造が採用されていました。周辺の河川堤防は破堤し、住宅地は壊滅状態であったのに対し、鋼矢板二重締切工とその中に建つ水門には、津波の爪痕がほとんど見受けられず、図らずもその耐震性・耐津波性能の高さが証明されることとなりました。

その他の参考資料

企業情報

株式会社 技研施工

〒279-0024 千葉県浦安市港75-1

℃ Tel.: 047-318-9111

☑ E-mail: consul@giken.com

Website : http://www.gikenseko.co.jp/